SECA Solid Oxide Fuel Cell Program

Sixth SECA Annual Workshop Pacific Grove, CA April 18-21, 2005

Program Overview

- Overall objective
 - Demonstrate a fuel-flexible, modular 3-to-10-kW solid oxide fuel cell (SOFC) system that can be configured to create highly efficient, costcompetitive, and reliable power plants tailored to specific markets
- Period of performance
 - Phase I, October 2001 September 2005
- Development team
 - GE Energy
 - Torrance, CA, Schenectady, NY, Greenville, SC
 - GE Global Research
 - Niskayuna, NY

SECA SOFC System Concept

System Features

- SOFC
 - High-performance reduced-temperature cells
 - Operation on light hydrocarbons
 - Tape calendering manufacturing process
- Fuel processor
 - Low-cost, fuel-flexible fuel processor design
 - Catalytic autothermal (ATR) process
 - Pre-reforming function
- Other subsystems
 - Integrated thermal management
 - Flexible control system

Program Features

Phase I Requirements

PARAMETER	PHASE I REQUIREMENTS
POWER RATING (net)	3Kw - 10 kW
COST	\$800/kW
EFFICIENCY (AC or DC/LHV)	Stationary-35%
STEADY STATE TEST @	1500 hrs
NORMAL OPERATING	80% avalability
CONDITIONS	Delta Power = 2% degradation/500 hrs at a constant stack V with R >= 0.95
TRANSIENT TEST	10 cycles
	Delta Power = 1% degradation after 10 cycles at a constant stack voltage
TEST SEQUENCE	1) Steady state 1000 hours
	2) Transient test
	3) Steady state 500 hours
FUEL TYPE	Operate the prototype on either a commercial commodity,
	or a representative fuel. Utilize external or internal primary fuel reformation or
	oxidation
MAINTENANCE INTERVAL	> 1000 hours
DESIGN LIFETIME	Not less than 40,000 operating hours for stationary applications

Prototype System Schematic

Prototype System

Estimated System Performance

- Performance Keys
 - Stack performance
 - Heat loss
 - Auxiliary power
 - Pressure drop
- -35% is well within reach
- -Improved cell enables efficiencies meeting SECA Phase III goal of 40%
- Opportunities remaining to improve system performance

Stack Requirements

Stack Performance:

- Power density: 0.3W/cm²
- Stack LHV efficiency: 47% on ATR fuel
 - Average cell voltage: 0.7V
 - Fuel utilization: 80%

Cell Performance:

- Power density: 0.3W/cm²
- Cell LHV efficiency: 51.7% on ATR fuel
 - Cell Voltage: 0.7V
 - Fuel Utilization: 88%

Cell Component:

■ Total ASR: < 560 mohm-cm²

SOFC Cell Performance

- Performance exceeding target
- Fuel utilization of up to 95% demonstrated
- Internal reforming demonstrated

Cell Module Performance Improvement

Stack Performance

Stack Performance with Reformate

Stack (20-Cell) Performance

Effect of Fuel Utilization

Effects of Air Flow

Thermal Cycle and Transport

Fuel processor

- ATR fuel processor
- Ability to meet system flowdown requirements (S/C, O/C, inlet temperature, methane slip, pressure drop)
- Integration with SOFC

Cathode Air Blower

Requirements

- Efficiency requirement of 57% at design point
- Interface and flow requirements

Design/Selection

- Evaluated several vendors
- Vendor selected
 - Modified existing pumphead
 - Custom motor & controller

- Validation

- Performance testing showed >60% efficiency at design point
- 1000 hour endurance test completed

Cathode Air Preheater

- -Problem Statement
 - UA requirements
 - Interface requirements
- -Design/Selection
 - Included design margin to allow wide range of system operation
- Validation
 - Vendor performance predictions
 - Hot tests in system

Fuel Processor Air Supply

Constant Voltage Input Lines

- -Requirements
 - Output pressure
 - Maximum airflow
 - DC Power
- -Design/Selection
 - Reitschle-Thomas blower
- -Validation
 - Performance and operability testing

Power Conditioning Module

-Requirements

- Input: 88-153 Vdc, 80 Adc.
- Output: Single Phase, 120/240 Vac
- Efficiency: 92% LSL, 95% Target
- Operation: Grid parallel & Stand Alone mode

-Design/Selection

- Extensive vendor search
- Selected a supplier based on efficiency

-Validation

- Performance mapping test completed
- Faults handling and dynamic response tests completed with results as expected.

Control System Design

- Fuel Cell Dynamic Component Model Library
 - Rapid development of dynamic system models
 - Design of control systems through simulation
- Rapid prototyping tools
 - Allow for direct transfer of controls designed in simulation to control of fuel cell system
 - Advanced control and sensing techniques can be investigated through simulation trade studies
 - Most promising approaches can be easily implemented in system hardware
- Improved system operation through explicit consideration of dynamics and controllability in design

Control Software Development

- Control software from simulation environment updated to support realtime environment
- A full set of software has been successfully implemented on real time controller
- Meets real time requirement with significant margin to account for remaining data communication between the controller and host as well as other design changes

Software Testing/Verification

Graphical User Interface

Prototype System Assembly and Test

- Prototype system assembly completed
- System safety reviews completed
- Integrated prototype testing initiated

Concluding Remarks

- SECA prototype system components defined, procured/developed and evaluated
- Prototype system assembly completed
- Testing being initiated

Acknowledgments

- DOE/NETL
 - -Travis Schultz, Wayne Surdoval, Mark Williams, Don Collins, Joe Strakey
- GE Fuel Cell Team

